LEARNING AND FLOURISHING TOGETHER

PDET

Freeman's Endowed CE Junior Academy

Calculation Policy

Calculation policy for: addition, subtraction, multiplication, division, length \& height, perimeter \& area, position \& direction and fractions, decimals and percentages.

From September2022

LEARNING AND FLOURISHING TOGETHER

Maths at Freeman's

- We follow a mastery approach that enables children to have a deep understanding of the mathematicsthey arelearning. Wehavean ambitious mastery curriculum for all.
- Children are happy, confident and resilient mathematicians
- Children have a 'can-do' attitude, believing that by working hard they can succeed
- Learning is embedded by giving all pupils the chance to revisit and reinforce key concepts
- Teachers model using the 'my turn, our turn, your turn' approach to scaffold children's new understanding in small steps
- CPA approach for all children to develop conceptual understanding
- Frequent opportunities for mathematical talk
- Correct use of mathematical vocabulary modelled and expected from children
- All children given the opportunity to reason mathematically and solve problems
- Pupils who are struggling to grasp a concept, quickly identified and provision pinplacetoensurethattheykeepupwiththerestoftheclass
- Children become fluent in the fundamentals of Maths, able to recall and apply knowledge fluently and accurately

LEARNING AND FLOURISHING TOGETHER

In Year 4

LEARNING AND FLOURISHING TOGETHER

Notes:	At this stage, children should be encouraged to work in the abstract. It is important that the place value of each digit is verbalised when modelling the process, e.g. 4 ones add 3 ones; 7 tens add 4 tens; 6 hundreds add 5 hundreds etc.

$\frac{417}{\substack{17 \\ \text { Ereman's Endoneld }}}$		LEAR FLOU TOG	$\begin{array}{l\|l} \text { NG AND } & +\square \\ \text { SHING } & \underbrace{+}_{3} \\ \text { THER } & \text { PDET } \end{array}$
Subtraction			
In Year 3			
Vocabulary taught:	first, then, now, takeaway, minus, part, whole, subtract, take away, less, fewer, difference between, subtract, tens boundary, hundreds boundary	Manipulatives and models used:	Interlocking cubes Bar model Part-whole model Double sided counters Tens frame Dienes Place value counters
Skill:	Concrete:	Pictorial:	Abstract:
Column subtraction (no exchanging)	Use dienes first, then move onto place value counters.	Use pictorial representations to help children solve the equations-these can be provided or children can draw their own.	5 6 7 - 1 3 4. Tom has 73 drinks. He gives 29 to Mary. How many does he have left?
Column subtraction (exchanging)	Use dienes first, then move onto place value counters.	Use pictorial representations to help children solve the equations - these can be provided or children can draw their own.	

LEARNING AND FLOURISHING TOGETHER

In Year 4			
Vocabulary taught:	equal, unequal, group,odd, even, array, multiple, multiplication, multiplied by, times, repeated addition, row, column,factor, product	Manipulatives and models used:	Dienes Place value counters
Objective:	Concrete:	Pictorial:	Abstract:
Multiply3-digitnumbersby 1 digit numbers	Usedienes and place valuecounterstosupport formal written methods.	Use images/draw picturesofdienesand place value counters to support formal written method	H T 2 4 \times 9 8 1 2

$\frac{17]^{110}}{\substack{\text { Preeman's Endoned }}}$		LEARN FLOUR	$\begin{array}{l\|l} \text { NG AND } & +\infty \\ \text { SHING } & \underbrace{}_{\Delta} \\ \text { THE } & \text { PDET } \\ \hline \end{array}$
Division			
In Year 3			
Vocabulary taught:	equal, unequal, group, even, odd, division, dividing, grouping, groups of	Manipulatives and models used:	Dienes Place value counters Place value grid
Skill:	Concrete:	Pictorial:	Abstract:
Divide a 2-digit number by a 1-digit number (sharing with no exchange)	Use dienes and place value counters to partition into equal groups, sharing thetens and ones. NB: Children should be taught to divide the tens first and then the ones.	Draw pictorial representations of dienes/place value counters,sharingthetens and ones. Apart-wholemodelis useful to use alongside this.	Calculate: $96 \div 3=32$ $\begin{array}{r} 32 \\ 3 \longdiv { 9 6 } \end{array}$
Divide a 2-digit number by a 1-digit number (sharing with an exchange)	Use dienes and place value counters to exchange one ten for ten ones. Children start with equipment outside the place value grid before sharing the tens and ones equally between rows.	Use images/drawings of dienes/place value counters, alongside a part-whole model.	Complete the statement using <, > or = $42 \div 3 \bigcirc 52 \div 4$

(a)		LEARNING AND EIOUIDICHINE			
In Year 4					
Vocabulary taught:	equal, unequal, group, even, odd, division, dividing, grouping, groups of	Manipulatives and models used:	Place value counters Place value grid Double sided counters		
Skill:	Concrete:	Pictorial:	Abstract:		
Divide a 3-digit number by a 1-digit number (short division)	Use place value or double sided counters in a place value grid alongsidethebusstop method. Childrenneedtogroup the place value counters bythedivisor, starting with the largest place value. For example: $42 \div 3$ Start by asking - 'How many groups of 3tens can we make?' (any remaining tens will be exchanged for ten ones) Then 'How many groups of3onescanwemake?'	Children can continue to use drawn diagrams using circlestorepresent double-sided or place value counters.	Following the short division method.		
Divide a 3-digit number by a 1-digitnumber (sharing)	Building on learning in Year 3, children use place value counters and a placevaluegrid toshare 3digit numbers into equal groups. Start with the	Use images/drawings of place value counters, alongsideapart-whole model.	Whati	08 divid	d by 8 ?

LEARNING AND FLOURISHING TOGETHER

	manipulatives outside the grid, before sharing the hundreds, tens and ones equally between the rows. This method is supported by flexible partitioning.

		LEARNING AND FLOURISHING \qquad	$\begin{array}{l\|l} \text { NG AND } & + \\ \text { SHING } & \underbrace{}_{\vdots} \\ \text { THER } & \text { PDE } \end{array}$
Fractions, Decimals and Percentages			
In Year 3			
Vocabulary taught:	fraction, equal part,equal grouping, equal sharing, parts of a whole, half, quarter, three quarters, third, equivalent fractions, unit fractions, non-unit fractions, numerator, denominator, one whole, two quarters, tenths	Manipulatives and models used:	Bar model Place value counters Double sided counters Fraction cubes Counting stick Tens frame
Skill:	Concrete:	Pictorial:	Abstract:
Counting in tenths	Children will be shown fractions on a counting stick or bar model and willcountupanddownin tenths.		$1 / 10$ of 8 is 0.8 because 8 divided by 10 is 0.8 .
Finding equivalent fractions	Use fraction cubes to show equivalence.	Pictorial representations can be explored - any area representation can and should be used. It doesn't have to be a circle.	Peter says $3 / 6$ is the same as a half. Is he correct? How do you know?

		LEARNING AND FLOURISHING\square	
Finding fractions of an amount	Use bar model and counterstofindfraction of an amount, e.g. $1 / 5$ of 25 . Buildonstrategytaught in Year 2. This can extend into larger numbers by using place value counters. E.g. ${ }^{1 / 4}$ of 88 : Extend when finding the fraction of a non-unit fraction bycirclingthe number of parts of the whole they are being asked tofind.	If necessary, use a bar model and draw dots/tens and ones to find a fraction of an amount. Build on strategy taught in Year 2. NB: Children must be taught to putone dot in each part, working left to right. This should move onto using digitsineach part ofthebarmodel,rather than dots/tens and ones as soon as possible. The aim is to build towards: -Divide the whole by the denominator -Multiply by the numerator. Thebarmodelcanalso be used to support problem solving.	Follow success steps of: > Divide the whole by the denominator Multiply by the numerator $\begin{gathered} \frac{2}{3} \text { of } 36 \\ 36 \div 3=12 \\ 12 \times 2=24 \\ \frac{2}{3} \text { of } 36=24 \end{gathered}$

		LEARN FLOUR \qquad	
In Year 4			
Vocabulary taught:	fraction, equal part, equal grouping, equal sharing, parts of a whole, parts of a whole, half, quarter, fraction, equal parts, groups, sharing, equivalent fraction, numerator, denominator, tenths, decimal equivalence hundredths, convert, proper fractions, improper fractions, decimal point	Manipulatives and models used:	Bar model Place value counters Double sided counters Number line Fraction cubes Place value chart
Skill:	Concrete:	Pictorial:	Abstract:
Count up and downin hundredths	Count up and down a number line displayed on w/board or counting stick. \square	Use a place valuegrid to emphasise the position of the hundredths. One Hundredth $=0.01=\frac{1}{100}$	$1 / 100$ of 80 is 0.8 because $80 \div 100=0.8 \text {. }$
Recognise and write decimal equivalents of tenths or hundredths	Use a blank tens frame (representing whole) or blank hundred square representing (representing whole) and double sided counters or decimal place value counters.	Useimagesoftensframe or hundred square.	$\begin{gathered} \boxed{\frac{1}{10}}=0.1 \\ \frac{5}{10}=\frac{1}{2}=0.5 \end{gathered}$
Dividea1-digitor2digit number by 10 or 100	Usecountersonaplace value chart to seehow the counters move when dividing by 10 or 100 .	Use a place value chart with digits e.g. $5 \div 10=0.5$	$0.2=\ldots$

	LEARNING AND FLOURISHING\square		
Add 2 or more fractions	Fraction cubes could be usedhereasaconcrete resource to reinforce understanding. Reallifeobjects such as a cake or an apple could also be used, e.g by using a fraction story.	The answer can be written as an improper fraction or a mixed number. \qquad	$\begin{aligned} & \frac{1}{9}+\frac{11}{9}+1 \\ & \frac{?}{9}+\frac{5}{9}+\frac{7}{9}=\frac{17}{9} \end{aligned}$
Subtract 2 fractions	Fraction cubes could be usedhereasaconcrete resource to reinforce understanding. Real lifeobjects such as a cake or an apple could also be used, e.g by using a fraction story.	Pictorial representations are crucial to help children develop conceptual understanding. Abarmodelandnumber line can both be used.	$\begin{aligned} & \frac{\square}{7}-\frac{3}{7}=\frac{\square}{7}-\frac{\square}{7} \\ & \frac{\square}{7}-\frac{3}{7}=\frac{\square}{7}+\frac{\square}{7} \end{aligned}$

		LEARNING AND FLOURISHING\qquad	
Find fractions of a quantity	Use a bar model and counters to find the fraction of an amount. Circle the number of parts they are being asked to find of the whole.	If necessary, use a bar model and draw dots/tens and ones to find a fraction of an amount. Build on strategytaughtinYear2 (and repeated in Year 3). NB: Children must be taught to putone dot in each part, working left to right. This should move onto using digitsineach part ofthebarmodel, rather than dots/tens and ones as soon as possible. The aim is to build towards: - Divide the whole by the denominator - Multiply bythe numerator.	Follow success steps of: > Divide the whole by the denominator > Multiply by the numerator $\begin{gathered} \frac{2}{3} \text { of } 36 \\ 36 \div 3=12 \\ 12 \times 2=24 \\ \frac{2}{3} \text { of } 36=24 \end{gathered}$

		LEARNING AND FLOURISHING\square	
Recognise mixed numbers and improper fractions. Convertfromoneform to the other.	Use fractions bars to explore this. Unifix cubes can also be used - e.g to convert 14/5 into a mixed number.	Abarmodelcan be used.	$\frac{7}{2}=3 \frac{1}{2}$ because $7 \div 2=3$ wholes with one half remaining $\frac{7}{3}=2 \frac{1}{3}$ because $2 \times 3=6$ with with one remaining
Add and subtract fractions within 1 (different denominators)	N/A	Use pictorial representations (e.g. diagram or bar model) to convert the fractions so they have the same denominator. It is important that the children write their working alongside these. \square $\frac{1}{2}+\frac{1}{8}=\frac{4}{8}+\frac{1}{8}=\frac{5}{8}$	$\begin{aligned} & \frac{2}{5}-\frac{1}{4} \\ & \frac{2}{5}=\frac{8}{20} \quad \frac{1}{5}=\frac{5}{20} \\ & \frac{8}{20}-\frac{5}{20}=\frac{3}{20} \\ & \frac{2}{5}-\frac{1}{4}=\frac{3}{20} \end{aligned}$

$\frac{17]^{110}}{\substack{\text { Preeman's Endoned }}}$		LEARNIN FLOURI \qquad	$\begin{array}{l\|l} \text { GAND } & +\infty \\ \text { HING } & { }_{0}^{*} \\ \text { HER } & \text { PDET } \end{array}$
Fractions, decimals and percentages			
In Year 6			
Vocabulary taught:	parts of a whole, half, quarter, fraction, equal parts, groups, sharing, equivalent fraction, numerator, denominator, thirds, sixths, sevenths, eights, tenths, hundredths, decimal, decimal fraction, decimal point, decimal place, decimal equivalent, proportion percentage, per cent, \%, reduced to, proper/improper fraction, ratio	Manipulatives and models used:	Fraction bars Bar model Fraction wall Place value counters Place value chart Part-whole model
Skill:	Concrete:	Pictorial:	Abstract:
Add and subtract numbers with different denominators and mixed numbers	N/A	$1 \frac{1}{2}+\frac{1}{3}$ $\frac{9}{6}+\frac{2}{6}=\frac{11}{6}=1 \frac{1}{6}$	$1 \frac{1}{2}+\frac{1}{3}=1 \frac{5}{6}$ Why? $\begin{aligned} & 1 \frac{1}{2}=\frac{3}{2} \\ & \frac{3}{2}=\frac{9}{6} \text { and } \frac{1}{3}=\frac{2}{6} \\ & \frac{9}{6}+\frac{2}{6}=\frac{11}{6}=1 \frac{5}{6} \end{aligned}$
Compare and order fractions	Use fraction bars	Use diagrams	Which is greater? $\frac{2}{8} \text { or } \frac{6}{16}$

		LEARNING AND FLOURISHING\square	
Use common factors to simplify fractions; use common multiples to express fractions in the same denomination	Use fraction bars	Useafractionwallto supportsimplifying \square	$\frac{18}{36}=\frac{6}{12}=\frac{1}{2}$
Multiply simple pairs of proper fractions	Children can fold paper to help them. $\text { E.g. } 1 / 3 \times 1 / 2$ Children fold a piece of paper into half and then fold the half into thirds. They shade the fraction of paper they have created and then open the piece of paper up again to show the fraction of the whole piece of paper.	Use diagrams to illustrate $\frac{1}{3} \times \frac{1}{2}=$	$\frac{1}{2} \times \frac{2}{4}=\frac{3}{8}$
Recall and use equivalences between fractions, decimals and percentages	Use fraction bars	Use diagrams. Would you prefer 75% or $3 / 8$ of a cake?	Peter scored 40180 in his speling test and Fraser Scored 40\%, Who had the higher score? Peter - $40 / 80=50 \%$ Fraser - 40% Therefore Peeter had the higher score.
Divide proper fractions by whole numbers	Use fractions bars	Use a bar model to support. $\frac{4}{7} \div 4=$	$\begin{aligned} & \frac{1}{2} \div 3=\frac{1}{6} \\ & \frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \end{aligned}$

		LEARNI FLOUR \qquad	AND HING	
Area				
At Freeman's:				
Vocabulary taught:	rectilinear shape, area, square centimetre, square millimetre, square metre, compound shape, irregular shape	Manipulatives, resources and models used:	Multiplica Squared	tion square paper
Stage of understanding:	Strategy:	Arithmetic Skills:	Representation:	
Year 4 Counting squares	Count the squares included in the shape. N.B. Ensure childrencross O\% counted squares.	1. Count the squares one by one. 2. Look for multiplication factsto count the squares more efficiently.	Jackuse to count e ciently shape is and two Therefor squares squares.	histimestables he squares more He can see the ur squares wide quares tall. itis4squares $\times 2$ o the area is 8
Year 5 Introducing formula for rectilinear shapes Compound shapes	Area of rectangle $=$ Length x Width Calculating area of compound shapes Area of irregular shapes	1. Identifythemost effective and efficient way to split the compound shape 2. Useknownfacts, wherepossible,to solve the calculations. Use prior knowledge of counting squares from Year 4 and use knowledge of fractions to combine part-covered squares to make a whole. Ensure children are marking counted squares.		16 cm 8 cm

		LEARNING AND FLOURISHING		
Perimeter				
In Freeman's				
Vocabulary taught:	perimeter, rectilinear shape, compound shape	Manipulatives, resources and models used:	Multiplica Squared	ion square paper
Stage of understanding:	Strategy:	Arithmetic Skills:	Representation:	
Year 3 Calculate perimeter	Children explore different methods for calculating perimeter, considering which is the most ef ficient. They should be taught to consider repeated addition and known number and multiplication facts e.g doubles and number bonds.	1. Number bonds 2. Doubles andnear doubles 3. Repeated addition 4. Multiplication facts		
Year 4 Perimeter on a grid	Children calculate the perimeter of rectilinear shapes(shapes where all the sides meet at right angles).	1. Counting squares on a grid		
Perimeter of a rectangle	Children need to be given chance to explore different approaches, e.g. adding all the sides together or adding the length and width together and multiplying by 2 .	1. Number bonds 2. Doubles andnear doubles 3. Repeated addition 4. Multiplication facts They will need to be taught to think about which method is most efficient for thegiven question.		
Perimeter of rectilinear shapes	Children begin to calculate the perimeter of rectilinear shapes without squared paper.	1. Number bonds 2. Doubles andnear doubles 3. Repeated addition 4. Multiplication		

		LEARNING AND FLOURISHING		
		facts. They will need to be taught to think about which method is most efficient for thegiven question.		
Year 5 Calculate perimeter	Children use their knowledge of perimeter to find unknown side lengths.	1. Number bonds 2. Doubles andnear doubles 3. Repeated addition 4. Multiplication facts They will need to be taught to think about which method is most e cient for thegiven question.	8 cm	
Year 6 Relationship between area and perimeter	Children explore that shapes with the same areacanhavethe same or di\%erent perimeters.	1. Number bonds 2. Doubles andnear doubles 3. Repeated addition 4. Multiplication facts They will need to be taught to think about which method is most e cient for thegiven question.		
Notes:	When calculating the peri sides asthey add them up missing sides.	ter of shapes, children should to avoid mistakes involving	be taught epetition	mark 0\% the of counting or

